Stream
将要处理的元素集合看作一种流,借助 Stream API
对流中的元素进行操作,比如:排序、筛选、聚合等。
Stream
可以由数组或集合创建,对流的操作可以分为两种:
中间操作,每次返回一个新的流,可以有多个。 终端操作,每个流只能进行一次终端操作,终端操作结束后流无法再次使用,终端操作会产生一个新的集合或值。 在使用 stream 之前,先理解一个概念:Optional
。
Optional
类是一个可以为null
的容器对象。如果值存在则isPresent()
方法会返回true
,调用get()
方法会返回该对象。
特性 Stream
不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。Stream
不会改变数据源,通常情况下会产生一个新的集合或一个值。Stream
具有延迟执行特性,只有调用终端操作时,中间操作才会执行。创建 通过 java.util.Collection.stream()
方法用集合创建流
1 2 3 4 5 List<String> list = Arrays.asList("a" , "b" , "c" ); Stream<String> stream = list.stream(); Stream<String> parallelStream = list.parallelStream();
使用 java.util.Arrays.stream(T[] array)
方法用数组创建流
1 2 int [] array={1 ,3 ,5 ,6 ,8 };IntStream stream = Arrays.stream(array);
使用 Stream
的静态方法: of()
、 iterate()
、generate()
1 2 3 4 5 6 7 Stream<Integer> stream = Stream.of(1 , 2 , 3 , 4 , 5 , 6 ); Stream<Integer> stream2 = Stream.iterate(0 , (x) -> x + 3 ).limit(4 ); stream2.forEach(System.out::println); Stream<Double> stream3 = Stream.generate(Math::random).limit(3 ); stream3.forEach(System.out::println);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 输出结果: > 0 > > 3 > > 6 > > 9 > 0.669917889514739 > 0.1297263830847296 > 0.014139651332686243 `Stream` / `parallelStream` 区别 **`stream`和`parallelStream`的简单区分:**`stream`是顺序流,由主线程按顺序对流执行操作,而`parallelStream`是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处: ![preview](https://wang-tech-blog.oss-cn-beijing.aliyuncs.com/images/jdk8stream-0.99t4zjt0ku.webp) 如果流中的数据量足够大,并行流可以加快处速度。除了直接创建并行流,还可以通过 `parallel()` 把顺序流转换成并行流: ```java Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst();
遍历/匹配(foreach/find/match) Stream
也是支持类似集合的遍历和匹配元素的,只是Stream
中的元素是以Optional
类型存在的。Stream
的遍历、匹配非常简单。
1 2 3 4 5 6 7 8 9 10 11 12 13 List<Integer> list = Arrays.asList(7 , 6 , 9 , 3 , 8 , 2 , 1 ); list.stream().filter(x -> x > 6 ).forEach(System.out::println); Optional<Integer> findFirst = list.stream().filter(x -> x > 6 ).findFirst(); Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6 ).findAny(); boolean anyMatch = list.stream().anyMatch(x -> x < 6 );System.out.println("匹配第一个值:" + findFirst.get()); System.out.println("匹配任意一个值:" + findAny.get()); System.out.println("是否存在大于6的值:" + anyMatch);
筛选(filter) 筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。
案例 筛选出Integer
集合中大于 7 的元素,并打印出来 1 2 3 List<Integer> list = Arrays.asList(6 , 7 , 3 , 8 , 1 , 2 , 9 ); Stream<Integer> stream = list.stream(); stream.filter(x -> x > 7 ).forEach(System.out::println);
运行结果
8
9
筛选员工中工资高于 8000 的人,并形成新的集合。 1 2 3 4 5 6 7 8 9 10 11 List<Person> personList = new ArrayList <Person>(); personList.add(new Person ("Tom" , 8900 , 23 , "male" , "New York" )); personList.add(new Person ("Jack" , 7000 , 25 , "male" , "Washington" )); personList.add(new Person ("Lily" , 7800 , 21 , "female" , "Washington" )); personList.add(new Person ("Anni" , 8200 , 24 , "female" , "New York" )); personList.add(new Person ("Owen" , 9500 , 25 , "male" , "New York" )); personList.add(new Person ("Alisa" , 7900 , 26 , "female" , "New York" )); List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000 ).map(Person::getName) .collect(Collectors.toList()); System.out.print("高于8000的员工姓名:" + fiterList);
运行结果
高于 8000 的员工姓名:[Tom, Anni, Owen]
聚合(max/min/count) max
、min
、count
这些字眼你一定不陌生,没错,在 mysql 中我们常用它们进行数据统计。Java stream 中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。
案例 1 2 3 4 List<String> list = Arrays.asList("adnm" , "admmt" , "pot" , "xbangd" , "weoujgsd" ); Optional<String> max = list.stream().max(Comparator.comparing(String::length)); System.out.println("最长的字符串:" + max.get());
运行结果
最长的字符串:weoujgsd
1 2 3 4 5 6 7 8 9 10 11 12 13 List<Integer> list = Arrays.asList(7 , 6 , 9 , 4 , 11 , 6 ); Optional<Integer> max = list.stream().max(Integer::compareTo); Optional<Integer> max2 = list.stream().max(new Comparator <Integer>() { @Override public int compare (Integer o1, Integer o2) { return o1.compareTo(o2); } }); System.out.println("自然排序的最大值:" + max.get()); System.out.println("自定义排序的最大值:" + max2.get());
运行结果
自然排序的最大值:11 自定义排序的最大值:11
1 2 3 4 5 6 7 8 9 10 List<Person> personList = new ArrayList <Person>(); personList.add(new Person ("Tom" , 8900 , 23 , "male" , "New York" )); personList.add(new Person ("Jack" , 7000 , 25 , "male" , "Washington" )); personList.add(new Person ("Lily" , 7800 , 21 , "female" , "Washington" )); personList.add(new Person ("Anni" , 8200 , 24 , "female" , "New York" )); personList.add(new Person ("Owen" , 9500 , 25 , "male" , "New York" )); personList.add(new Person ("Alisa" , 7900 , 26 , "female" , "New York" )); Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary)); System.out.println("员工工资最大值:" + max.get().getSalary());
运行结果
员工工资最大值:9500
1 2 3 4 List<Integer> list = Arrays.asList(7 , 6 , 4 , 8 , 2 , 11 , 9 ); long count = list.stream().filter(x -> x > 6 ).count();System.out.println("list中大于6的元素个数:" + count);
运行结果
list 中大于 6 的元素个数:4
映射(map/flatMap) 映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map
和flatMap
:
案例 英文字符串数组的元素全部改为大写。整数数组每个元素+3。 1 2 3 4 5 6 7 8 String[] strArr = { "abcd" , "bcdd" , "defde" , "fTr" }; List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList()); List<Integer> intList = Arrays.asList(1 , 3 , 5 , 7 , 9 , 11 ); List<Integer> intListNew = intList.stream().map(x -> x + 3 ).collect(Collectors.toList()); System.out.println("每个元素大写:" + strList); System.out.println("每个元素+3:" + intListNew);
运行结果
每个元素大写:[ABCD, BCDD, DEFDE, FTR] 每个元素+3:[4, 6, 8, 10, 12, 14]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 List<Person> personList = new ArrayList <Person>(); personList.add(new Person ("Tom" , 8900 , 23 , "male" , "New York" )); personList.add(new Person ("Jack" , 7000 , 25 , "male" , "Washington" )); personList.add(new Person ("Lily" , 7800 , 21 , "female" , "Washington" )); personList.add(new Person ("Anni" , 8200 , 24 , "female" , "New York" )); personList.add(new Person ("Owen" , 9500 , 25 , "male" , "New York" )); personList.add(new Person ("Alisa" , 7900 , 26 , "female" , "New York" )); List<Person> personListNew = personList.stream().map(person -> { Person personNew = new Person (person.getName(), 0 , 0 , null , null ); personNew.setSalary(person.getSalary() + 10000 ); return personNew; }).collect(Collectors.toList()); System.out.println("一次改动前:" + personList.get(0 ).getName() + "-->" + personList.get(0 ).getSalary()); System.out.println("一次改动后:" + personListNew.get(0 ).getName() + "-->" + personListNew.get(0 ).getSalary()); List<Person> personListNew2 = personList.stream().map(person -> { person.setSalary(person.getSalary() + 10000 ); return person; }).collect(Collectors.toList()); System.out.println("二次改动前:" + personList.get(0 ).getName() + "-->" + personListNew.get(0 ).getSalary()); System.out.println("二次改动后:" + personListNew2.get(0 ).getName() + "-->" + personListNew.get(0 ).getSalary());
运行结果
一次改动前:Tom–>8900 一次改动后:Tom–>18900 二次改动前:Tom–>18900 二次改动后:Tom–>18900
1 2 3 4 5 6 7 8 9 10 List<String> list = Arrays.asList("m,k,l,a" , "1,3,5,7" ); List<String> listNew = list.stream().flatMap(s -> { String[] split = s.split("," ); Stream<String> s2 = Arrays.stream(split); return s2; }).collect(Collectors.toList()); System.out.println("处理前的集合:" + list); System.out.println("处理后的集合:" + listNew);
运行结果
处理前的集合:[m-k-l-a, 1-3-5] 处理后的集合:[m, k, l, a, 1, 3, 5]
规约(reduce) 归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。
案例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 List<Integer> list = Arrays.asList(1 , 3 , 2 , 8 , 11 , 4 ); Optional<Integer> sum = list.stream().reduce((x, y) -> x + y); Optional<Integer> sum2 = list.stream().reduce(Integer::sum); Integer sum3 = list.stream().reduce(0 , Integer::sum);Optional<Integer> product = list.stream().reduce((x, y) -> x * y); Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y); Integer max2 = list.stream().reduce(1 , Integer::max);System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3); System.out.println("list求积:" + product.get()); System.out.println("list求和:" + max.get() + "," + max2);
运行结果
list 求和:29,29,29 list 求积:2112 list 求和:11,11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 List<Person> personList = new ArrayList <Person>(); personList.add(new Person ("Tom" , 8900 , 23 , "male" , "New York" )); personList.add(new Person ("Jack" , 7000 , 25 , "male" , "Washington" )); personList.add(new Person ("Lily" , 7800 , 21 , "female" , "Washington" )); personList.add(new Person ("Anni" , 8200 , 24 , "female" , "New York" )); personList.add(new Person ("Owen" , 9500 , 25 , "male" , "New York" )); personList.add(new Person ("Alisa" , 7900 , 26 , "female" , "New York" )); Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum); Integer sumSalary2 = personList.stream().reduce(0 , (sum, p) -> sum += p.getSalary(), (sum1, sum2) -> sum1 + sum2); Integer sumSalary3 = personList.stream().reduce(0 , (sum, p) -> sum += p.getSalary(), Integer::sum);Integer maxSalary = personList.stream().reduce(0 , (max, p) -> max > p.getSalary() ? max : p.getSalary(), Integer::max); Integer maxSalary2 = personList.stream().reduce(0 , (max, p) -> max > p.getSalary() ? max : p.getSalary(), (max1, max2) -> max1 > max2 ? max1 : max2); System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3); System.out.println("最高工资:" + maxSalary + "," + maxSalary2);
运行结果
工资之和:49300,49300,49300 最高工资:9500,9500
收集(collect) collect
,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。
collect
主要依赖java.util.stream.Collectors
类内置的静态方法。
归集(toList/toSet/toMap) 因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList
、toSet
和toMap
比较常用,另外还有toCollection
、toConcurrentMap
等复杂一些的用法。
下面用一个案例演示toList
、toSet
和toMap
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 List<Integer> list = Arrays.asList(1 , 6 , 3 , 4 , 6 , 7 , 9 , 6 , 20 ); List<Integer> listNew = list.stream().filter(x -> x % 2 == 0 ).collect(Collectors.toList()); Set<Integer> set = list.stream().filter(x -> x % 2 == 0 ).collect(Collectors.toSet()); List<Person> personList = new ArrayList <Person>(); personList.add(new Person ("Tom" , 8900 , 23 , "male" , "New York" )); personList.add(new Person ("Jack" , 7000 , 25 , "male" , "Washington" )); personList.add(new Person ("Lily" , 7800 , 21 , "female" , "Washington" )); personList.add(new Person ("Anni" , 8200 , 24 , "female" , "New York" )); Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000 ) .collect(Collectors.toMap(Person::getName, p -> p)); System.out.println("toList:" + listNew); System.out.println("toSet:" + set); System.out.println("toMap:" + map);
运行结果
toList:[6, 4, 6, 6, 20] toSet:[4, 20, 6] toMap:{Tom=mutest.Person@5fd0d5ae, Anni=mutest.Person@2d98a335}
统计(count/averaging) Collectors
提供了一系列用于数据统计的静态方法:
计数:count
平均值:averagingInt
、averagingLong
、averagingDouble
最值:maxBy
、minBy
求和:summingInt
、summingLong
、summingDouble
统计以上所有:summarizingInt
、summarizingLong
、summarizingDouble
案例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 List<Person> personList = new ArrayList <Person>(); personList.add(new Person ("Tom" , 8900 , 23 , "male" , "New York" )); personList.add(new Person ("Jack" , 7000 , 25 , "male" , "Washington" )); personList.add(new Person ("Lily" , 7800 , 21 , "female" , "Washington" )); Long count = personList.stream().collect(Collectors.counting());Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare)); Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));System.out.println("员工总数:" + count); System.out.println("员工平均工资:" + average); System.out.println("员工工资总和:" + sum); System.out.println("员工工资所有统计:" + collect);
运行结果
员工总数:3 员工平均工资:7900.0 员工工资总和:23700 员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000,min=7000.000000, average=7900.000000, max=8900.000000}
分组(partitioningBy/groupingBy) 分区:将stream
按条件分为两个Map
,比如员工按薪资是否高于 8000 分为两部分。 分组:将集合分为多个 Map,比如员工按性别分组。有单级分组和多级分组。 案例 将员工按薪资是否高于 8000 分为两部分;将员工按性别和地区分组 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 List<Person> personList = new ArrayList <Person>(); personList.add(new Person ("Tom" , 8900 , "male" , "New York" )); personList.add(new Person ("Jack" , 7000 , "male" , "Washington" )); personList.add(new Person ("Lily" , 7800 , "female" , "Washington" )); personList.add(new Person ("Anni" , 8200 , "female" , "New York" )); personList.add(new Person ("Owen" , 9500 , "male" , "New York" )); personList.add(new Person ("Alisa" , 7900 , "female" , "New York" )); Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000 )); Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex)); Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea))); System.out.println("员工按薪资是否大于8000分组情况:" + part); System.out.println("员工按性别分组情况:" + group); System.out.println("员工按性别、地区:" + group2);
运行结果
1 2 3 员工按薪资是否大于8000分组情况:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]} 员工按性别分组情况:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]} 员工按性别、地区:{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}}
接合(joining) joining
可以将 stream 中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。
1 2 3 4 5 6 7 8 9 10 List<Person> personList = new ArrayList <Person>(); personList.add(new Person ("Tom" , 8900 , 23 , "male" , "New York" )); personList.add(new Person ("Jack" , 7000 , 25 , "male" , "Washington" )); personList.add(new Person ("Lily" , 7800 , 21 , "female" , "Washington" )); String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining("," ));System.out.println("所有员工的姓名:" + names); List<String> list = Arrays.asList("A" , "B" , "C" ); String string = list.stream().collect(Collectors.joining("-" ));System.out.println("拼接后的字符串:" + string);
运行结果
所有员工的姓名:Tom,Jack,Lily 拼接后的字符串:A-B-C
规约(reducing) Collectors
类提供的reducing
方法,相比于stream
本身的reduce
方法,增加了对自定义归约的支持。
1 2 3 4 5 6 7 8 9 10 11 12 List<Person> personList = new ArrayList <Person>(); personList.add(new Person ("Tom" , 8900 , 23 , "male" , "New York" )); personList.add(new Person ("Jack" , 7000 , 25 , "male" , "Washington" )); personList.add(new Person ("Lily" , 7800 , 21 , "female" , "Washington" )); Integer sum = personList.stream().collect(Collectors.reducing(0 , Person::getSalary, (i, j) -> (i + j - 5000 )));System.out.println("员工扣税薪资总和:" + sum); Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum); System.out.println("员工薪资总和:" + sum2.get());
运行结果
员工扣税薪资总和:8700 员工薪资总和:23700
排序(sorted) sorted
中间操作。有两种排序:
sorted():自然排序,流中元素需实现 Comparable 接口 sorted(Comparator com):Comparator 排序器自定义排序 案例 将员工按工资由高到低(工资一样则按年龄由大到小)排序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 List<Person> personList = new ArrayList <Person>(); personList.add(new Person ("Sherry" , 9000 , 24 , "female" , "New York" )); personList.add(new Person ("Tom" , 8900 , 22 , "male" , "Washington" )); personList.add(new Person ("Jack" , 9000 , 25 , "male" , "Washington" )); personList.add(new Person ("Lily" , 8800 , 26 , "male" , "New York" )); personList.add(new Person ("Alisa" , 9000 , 26 , "female" , "New York" )); List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName) .collect(Collectors.toList()); List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed()) .map(Person::getName).collect(Collectors.toList()); List<String> newList3 = personList.stream() .sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName) .collect(Collectors.toList()); List<String> newList4 = personList.stream().sorted((p1, p2) -> { if (p1.getSalary() == p2.getSalary()) { return p2.getAge() - p1.getAge(); } else { return p2.getSalary() - p1.getSalary(); } }).map(Person::getName).collect(Collectors.toList()); System.out.println("按工资升序排序:" + newList); System.out.println("按工资降序排序:" + newList2); System.out.println("先按工资再按年龄升序排序:" + newList3); System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
运行结果
按工资升序排序:[Lily, Tom, Sherry, Jack, Alisa] 按工资降序排序:[Sherry, Jack, Alisa, Tom, Lily] 先按工资再按年龄升序排序:[Lily, Tom, Sherry, Jack, Alisa] 先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily]
提取/组合 流也可以进行合并、去重、限制、跳过等操作。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 String[] arr1 = { "a" , "b" , "c" , "d" }; String[] arr2 = { "d" , "e" , "f" , "g" }; Stream<String> stream1 = Stream.of(arr1); Stream<String> stream2 = Stream.of(arr2); List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList()); List<Integer> collect = Stream.iterate(1 , x -> x + 2 ).limit(10 ).collect(Collectors.toList()); List<Integer> collect2 = Stream.iterate(1 , x -> x + 2 ).skip(1 ).limit(5 ).collect(Collectors.toList()); System.out.println("流合并:" + newList); System.out.println("limit:" + collect); System.out.println("skip:" + collect2);
运行结果
流合并:[a, b, c, d, e, f, g] limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19] skip:[3, 5, 7, 9, 11]